
QtWayland

Creating Window Compositors with the 
QtWayland module

Andy Nichols
2012



A little about me...

● Andy Nichols

● Software Engineer at Digia

● 6 years of Qt experience

● Former Qt Support Engineer

● Maintainer of QtWayland



Outline

● The past (QWS)

● What is wayland?

● The QtWayland Module

● How do you use QtWayland?



In case you have not heard...



QWS has been removed in Qt 5.0



QWS Graphics Stack



Direct Rendering with QWS

● Clients map regions of the framebuffer

● Regions are written to directly by client



Accelerated Graphics in QWS

● Custom QScreen plugin

● Custom paint engine

● Custom paint device



If that is the case, then why replace 
QWS?



It works great for its original use 
case



But we are not living in that world 
anymore



Have you ever actually had to 
support OpenGL in QWS?



QWS is inflexible

● Supporting new hardware
● Customization of look and feel



Lack of OpenGL Support

● OpenGL QScreen Plugins do exist

● Limited to particular hardware

● Require specific API's

● Limited to a single process



QWS: Does it still make sense?

● Overlap with QPA

● Few QWS developers

● Protocol design is hard



And then came a project called 
Wayland



What is Wayland?

"Wayland is a protocol for a compositor to talk 
to its clients as well as a C library 
implementation of that protocol."

-wayland.freedesktop.org



Wayland Compositors can be

● a standalone display server 
● an X11 application 
● a wayland client

Weston 
Compositor



Wayland Clients can be

● Traditional applications 

● X servers
○ rootless

○ fullscreen 

● other display servers



How does Wayland work?

1. Input events
2. Direct events to client

a. Location in scenegraph
b. Inverse transform

3. Respond to UI events
a. Render changes
b. notify compositor of 

changed regions
4. Post composition to output

src: wayland.freedesktop.org



The Wayland Compositor

● Composes output

● Handles Input devices

● Forwards input events to clients

● Coordinates client buffers



The Wayland Clients

● Renders to a surface buffer
○ Shared Memory buffers

○ native buffers (GPU memory)

● Notifies compositor of changes



Wayland Buffer Sharing

● Shared Memory buffers
○ Raster based toolkits

● GPU buffers
○ shared between processes with EGL
○ mapped as a texture
○ no additional upload costs

● Wayland-EGL



Why choose Wayland?

● Lightweight

● Fast and Smooth

● External Open Source Project

● Easy to make customized Compositor

● Protocol is extendable



but the best reason is...



Cross toolkit 
compatibility



Try doing that with QWS!



The QtWayland Module

● Wayland platform plugin

● QtCompositor API



Running Qt Applications in a 
Wayland Compositor

Just add "-platform wayland"
To run as a wayland client



Demo Time



QtCompositor API



WaylandCompositor

● Subclass to create your own compositor
● reimplement 

○ surfaceCreated(WaylandSurface *surface)
● Call frameFinished() after all surfaces are 

rendered.



WaylandSurface

● Emits signals when client's state has 

changed
○ mapped

○ unmapped

○ damaged

● Contains data needed to render surface





WaylandSurface data



WaylandInputDevice

● Get instance from:

WaylandCompositor::defaultInputDevice()

● Forward events to Wayland clients.

● Focus management



QWindow Compositor Demo



WaylandSurfaceItem

● QtQuick 2.0 Item for WaylandSurface



QML Compositor Demo



QtWayland on new hardware

● Wayland-EGL
● Hardware Integrations

○ Client
■ QWaylandGLIntegration
■ native window surface
■ native OpenGL Context

○ Server
■ GraphicsHardwareIntegration
■ native buffer
■ how to map native buffer to texture



Hardware without OpenGL

● No native GPU buffers are used

● No QtQuick 2.0

● Mesa + LLVM software rendered OpenGL 

possible



Compositor Creativity Demo



The Future of QtWayland

● Full wayland 1.0.0 spec support

● Proper client side decorations

● qt-wayland-scanner

● Fullscreen direct rendering



Questions?



Thanks for coming!

email: andy.nichols@digia.com
freenode irc: nezticle


